Why Local Search Excels in Expression Simplification

نویسندگان

  • Ben Ruijl
  • Aske Plaat
  • J. A. M. Vermaseren
  • H. Jaap van den Herik
چکیده

Simplifying expressions is important to make numerical integration of large expressions from High Energy Physics tractable. To this end, Horner’s method can be used. Finding suitable Horner schemes is assumed to be hard, due to the lack of local heuristics. Recently, MCTS was reported to be able to find near optimal schemes. However, several parameters had to be fine-tuned manually. In this work, we investigate the state space properties of Horner schemes and find that the domain is relatively flat and contains only a few local minima. As a result, the Horner space is appropriate to be explored by Stochastic Local Search (SLS), which has only two parameters: the number of iterations (computation time) and the neighborhood structure. We found a suitable neighborhood structure, leaving only the allowed computation time as a parameter. We performed a range of experiments. The results obtained by SLS are similar or better than those obtained by MCTS. Furthermore, we show that SLS obtains the good results at least 10 times faster. Using SLS, we can speed up numerical integration of many real-world large expressions by at least a factor of 24. For High Energy Physics this means that numerical integrations that took weeks can now be done in hours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Model of Tabu Search for the Job-Shop Scheduling Problem

Although tabu search is one of the most effective meta-heuristics for solving the job-shop scheduling problem (JSP), very little is known about why this approach works so well and under what conditions it excels. Our goal is to develop models of tabu search algorithms for the JSP that answer these and other related research questions. We previously demonstrated that the mean distance between ra...

متن کامل

Biclustering Using Message Passing

Biclustering is the analog of clustering on a bipartite graph. Existent methods infer biclusters through local search strategies that find one cluster at a time; a common technique is to update the row memberships based on the current column memberships, and vice versa. We propose a biclustering algorithm that maximizes a global objective function using message passing. Our objective function c...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Searching in the Presence of Noise

In this paper, we examine the eeects of noise on both local search and genetic search. Understanding the potential eeects of noise on a search space may explain why some search techniques fail and why others succeed in the presence of noise. We discuss two eeects that are the result of adding noise to a search space: the annealing of peaks in the search space and the introduction of false local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1409.5223  شماره 

صفحات  -

تاریخ انتشار 2014